Synopsis
Data Skeptic is a data science podcast exploring machine learning, statistics, artificial intelligence, and other data topics through short tutorials and interviews with domain experts.
Episodes
-
Signal in the Noise
25/04/2024 Duration: 41minIn this episode, we are joined by Barbara Webb and Anna Hadjitofi. Barbara runs the Insect Robotics lab at the University of Edinburgh, and Anna is a PhD student at the School of Informatics at the university. She is interested in studying and understanding the neural mechanism of the honeybee waggle dance. They join us to discuss the paper: Dynamic antennal positioning allows honeybee followers to decode the dance.
-
Pose Tracking
16/04/2024 Duration: 50minMany researchers and students have painstakingly labeled precise details about the body positions of the creatures they study. Can AI be used for this labeling? Of course it can! Today's episode discusses Social LEAP Estimates Animal Poses (SLEAP), a software solution to train AI to perform this tedious but important labeling work.
-
Modeling Group Behavior
08/04/2024 Duration: 40minOur guest in this episode is Sebastien Motsch, an assistant professor at Arizona State University, working in the School of Mathematical and Statistical Science. He works on modeling self-organized biological systems to understand how complex patterns emerge.
-
Advances in Data Loggers
25/03/2024 Duration: 35minOur guest in this episode is Ryan Hanscom. Ryan is a Ph.D. candidate in a joint doctoral evolution program at San Diego State University and the University of California, Riverside. He is a terrestrial ecologist with a focus on herpetology and mammalogy. Ryan discussed how the behavior of rattlesnakes is studied in the natural world, particularly with an increase in temperature.
-
What You Know About Intelligence is Wrong (fixed)
20/03/2024 Duration: 41minWe are joined by Hank Schlinger, a professor of psychology at California State University, Los Angeles. His research revolves around theoretical issues in psychology and behavioral analysis. Hank establishes that words have references and questions the reference for intelligence. He discussed how intelligence can be observed in animals. He also discussed how intelligence is measured in a given context.
-
Animal Decision Making
12/03/2024 Duration: 37minOn today’s episode, we are joined by Aimee Dunlap. Aimee is an assistant professor at the University of Missouri–St. Louis and the interim director at the Whitney R. Harris World Ecology Center. Aimee discussed how animals perceive information and what they use it for. She discussed the connection between their environment and learning for decision-making. She also discussed the costs required for learning and factors that affect animal learning.
-
Octopus Cognition
08/03/2024 Duration: 38minWe are joined by Tamar Gutnick, a visiting professor at the University of Naples Federico II, Napoli, Italy. She studies the octopus nervous system and their behavior, focusing on cognition and learning behaviors. Tamar gave a background to the kind of research she does — lab research. She discussed some challenges with observing octopuses in the lab. She discussed some patterns observed by the octopus lifestyle in a controlled setting. Tamar discussed what they know about octopus intelligence. She discussed the octopus nervous system and why they are unique compared to other animals. She discussed how they measure the behavior of octopuses using a video recording and a logger to track brain activity.
-
Optimal Foraging
28/02/2024 Duration: 38minClaire Hemmingway, an assistant professor in the Department of Psychology and Ecology and Evolutionary Biology at the University of Tennessee in Knoxville, is our guest today. Her research is on decision-making in animal cognition, focusing on neotropical bats and bumblebees. Claire discussed how bumblebees make foraging decisions and how they communicate when foraging. She discussed how they set up experiments in the lab to address questions about bumblebees foraging. She also discussed some nuances between bees in the lab and those in the wild. Claire discussed factors that drive an animal's foraging decisions. She explained the foraging theory and how a colony works together to optimize its foraging. She also touched on some irrational foraging behaviors she observed in her study. Claire discussed some techniques bees use to learn from past behaviors. She discussed the effect of climate change on foraging bees' learning behavior. Claire discussed how bats respond to calling frogs when foraging. She also sp
-
Memory in Chess
12/02/2024 Duration: 48minOn today’s show, we are joined by our co-host, Becky Hansis-O’Neil. Becky is a Ph.D. student at the University of Missouri, St Louis, where she studies bumblebees and tarantulas to understand their learning and cognitive work. She joins us to discuss the paper: Perception in Chess. The paper aimed to understand how chess players perceive the positions of chess pieces on a chess board. She discussed the findings paper. She spoke about situations where grandmasters had better recall of chess positions than beginners and situations where they did not. Becky and Kyle discussed the use of chess engines for cheating. They also discussed how chess players use chunking. Becky discussed some approaches to studying chess cognition, including eye tracking, EEG, and MRI. ## Paper in Focus Perception in chess ## Resources Detecting Cheating in Chess with Ken Regan
-
OpenWorm
05/02/2024 Duration: 34minOn this episode, we are joined by Stephen Larson, the CEO of MetaCell and an affiliate of the OpenWorm foundation. Stephen discussed what the Openworm project is about. They hope to use a digital C. elegans nematode (C. elegans for short) to study the basics of life. Stephen discussed why C. elegans is an ideal organism for studying life in the lab. He also discussed the steps involved in simulating a digital organism. He mentioned the constraints on the cellular scale that informed their development of a digital C. elegans. Stephen discussed the validation process of the simulation. He discussed how they discovered the best parameters to capture the behavior of natural C. elegans. He also discussed how biologists embraced the project. Stephen discussed the computational requirements for improving the simulation parameters of the model and the kind of data they require to scale up. Stephen discussed some findings that the machine-learning communities can take away from the project. He also mentioned how stude
-
What the Antlion Knows
30/01/2024 Duration: 41minOur guest is Becky Hansis-O’Neil, a Ph.D. student at the University of Missouri, St Louis, and our co-host for the new "Animal Intelligence" season. Becky shares her background on how she got into the field of behavioral intelligence and biology.
-
AI Roundtable
17/01/2024 Duration: 50minKyle is joined by friends and former guests Pramit Choudhary and Frank Bell to have an open discussion of the impacts LLMs and machine learning have had in the past year on industry, and where things may go in the current year.
-
Uncontrollable AI Risks
27/12/2023 Duration: 38minWe are joined by Darren McKee, a Policy Advisor and the host of Reality Check — a critical thinking podcast. Darren gave a background about himself and how he got into the AI space. Darren shared his thoughts on AGI's achievements in the coming years. He defined AGI and discussed how to differentiate an AGI system. He also shared whether AI needs consciousness to be AGI. Darren discussed his worry about AI surpassing human understanding of the universe and potentially causing harm to humanity. He also shared examples of how AI is already used for nefarious purposes. He explored whether AI possesses inherently evil intentions and gave his thoughts on regulating AI.
-
I LLM and You Can Too
23/12/2023 Duration: 23minIt took a massive financial investment for the first large language models (LLMs) to be created. Did their corporate backers lock these tools away for all but the richest? No. They provided comodity priced API options for using them. Anyone can talk to Chat GPT or Bing. What if you want to go a step beyond that and do something programatic? Kyle explores your options in this episode.
-
Q&A with Kyle
19/12/2023 Duration: 40minWe celebrate episode 1000000000 with some Q&A from host Kyle Polich. We boil this episode down to four key questions: 1) How do you find guests 2) What is Data Skeptic all about? 3) What is Kyle all about? 4) What are Kyle's thoughts on AGI? Thanks to our sponsorsdataannotation.tech/programmers https://www.webai.com/dataskeptic
-
LLMs for Data Analysis
12/12/2023 Duration: 29minIn this episode, we are joined by Amir Netz, a Technical Fellow at Microsoft and the CTO of Microsoft Fabric. He discusses how companies can use Microsoft's latest tools for business intelligence. Amir started by discussing how business intelligence has progressed in relevance over the years. Amir gave a brief introduction into what Power BI and Fabric are. He also discussed how Fabric distinguishes from other BI tools by building an end-to-end tool for the data journey. Amir spoke about the process of building and deploying machine learning models with Microsoft Fabric. He shared the difference between Software as a Service (SaaS) and Platform as a Service (PaaS). Amir discussed the benefits of Fabric's auto-integration and auto-optimization abilities. He also discussed the capabilities of Copilot in Fabric. He also discussed exciting future developments planned for Fabric. Amir shared techniques for limiting Copilot hallucination.
-
AI Platforms
04/12/2023 Duration: 33minOur guest today is Eric Boyd, the Corporate Vice President of AI at Microsoft. Eric joins us to share how organizations can leverage AI for faster development. Eric shared the benefits of using natural language to build products. He discussed the future of version control and the level of AI background required to get started with Azure AI. He mentioned some foundational models in Azure AI and their capabilities. Follow Eric on LinkedIn to learn more about his work. Visit today's sponsor at https://webai.com/dataskeptic
-
Deploying LLMs
27/11/2023 Duration: 35minWe are excited to be joined by Aaron Reich and Priyanka Shah. Aaron is the CTO at Avanade, while Priyanka leads their AI/IoT offering for the SEA Region. Priyanka is also the MVP for Microsoft AI. They join us to discuss how LLMs are deployed in organizations.
-
A Survey Assessing Github Copilot
20/11/2023 Duration: 26minIn this episode, we are joined by Jenny Liang, a PhD student at Carnegie Mellon University, where she studies the usability of code generation tools. She discusses her recent survey on the usability of AI programming assistants. Jenny discussed the method she used to gather people to complete her survey. She also shared some questions in her survey alongside vital takeaways. She shared the major reasons for developers not wanting to us code-generation tools. She stressed that the code-generation tools might access the software developers' in-house code, which is intellectual property. Learn more about Jenny Liang via https://jennyliang.me/
-
Program Aided Language Models
13/11/2023 Duration: 32minWe are joined by Aman Madaan and Shuyan Zhou. They are both PhD students at the Language Technology Institute at Carnegie Mellon University. They join us to discuss their latest published paper, PAL: Program-aided Language Models. Aman and Shuyan started by sharing how the application of LLMs has evolved. They talked about the performance of LLMs on arithmetic tasks in contrast to coding tasks. Aman introduced their PAL model and how it helps LLMs improve at arithmetic tasks. He shared examples of the tasks PAL was tested on. Shuyan discussed how PAL’s performance was evaluated using Big Bench hard tasks. They discussed the kind of mistakes LLMs tend to make and how the PAL’s model circumvents these limitations. They also discussed how these developments in LLMS can improve kids learning. Rounding up, Aman discussed the CoCoGen project, a project that enables NLP tasks to be converted to graphs. Shuyan and Aman shared their next research steps. Follow Shuyan on Twitter @shuyanzhxyc. Follow Aman on @aman_madaa