Data Skeptic

  • Author: Vários
  • Narrator: Vários
  • Publisher: Podcast
  • Duration: 298:52:45
  • More information

Informações:

Synopsis

Data Skeptic is a data science podcast exploring machine learning, statistics, artificial intelligence, and other data topics through short tutorials and interviews with domain experts.

Episodes

  • Bayesian A/B Testing

    23/10/2015 Duration: 30min

    Today's guest is Cameron Davidson-Pilon. Cameron has a masters degree in quantitative finance from the University of Waterloo. Think of it as statistics on stock markets. For the last two years he's been the team lead of data science at Shopify. He's the founder of dataoragami.net which produces screencasts teaching methods and techniques of applied data science. He's also the author of the just released in print book Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference, which you can also get in a digital form. This episode focuses on the topic of Bayesian A/B Testing which spans just one chapter of the book. Related to today's discussion is the Data Origami post The class imbalance problem in A/B testing. Lastly, Data Skeptic will be giving away a copy of the print version of the book to one lucky listener who has a US based delivery address. To participate, you'll need to write a review of any site, book, course, or podcast of your choice on datasciguide.com. After it goes live, t

  • [MINI] The Central Limit Theorem

    16/10/2015 Duration: 13min

    The central limit theorem is an important statistical result which states that typically, the mean of a large enough set of independent trials is approximately normally distributed.  This episode explores how this might be used to determine if an amazon parrot like Yoshi produces or or less waste than an African Grey, under the assumption that the individual distributions are not normal.

  • Accessible Technology

    09/10/2015 Duration: 38min

    Today's guest is Chris Hofstader (@gonz_blinko), an accessibility researcher and advocate, as well as an activist for causes such as improving access to information for blind and vision impaired people. His background in computer programming enabled him to be the leader of JAWS, a Windows program that allowed people with a visual impairment to read their screen either through text-to-speech or a refreshable braille display. He's the Managing Member of 3 Mouse Technology. He's also a frequent blogger primarily at chrishofstader.com. For web developers and site owners, Chris recommends two tools to help test for accessibility issues: tenon.io and dqtech.co. A guest post from Chris appeared on the Skepchick blogged titled Skepticism and Disability which lead to the formation of the sister site Skeptibility. In a discussion of skepticism and favorite podcasts, Chris mentioned a number of great shows, most notably The Pod Delusion to which he was a contributor. Additionally, Chris has also appeared on The Atheist

  • [MINI] Multi-armed Bandit Problems

    02/10/2015 Duration: 12min

    The multi-armed bandit problem is named with reference to slot machines (one armed bandits). Given the chance to play from a pool of slot machines, all with unknown payout frequencies, how can you maximize your reward? If you knew in advance which machine was best, you would play exclusively that machine. Any strategy less than this will, on average, earn less payout, and the difference can be called the "regret". You can try each slot machine to learn about it, which we refer to as exploration. When you've spent enough time to be convinced you've identified the best machine, you can then double down and exploit that knowledge. But how do you best balance exploration and exploitation to minimize the regret of your play? This mini-episode explores a few examples including restaurant selection and A/B testing to discuss the nature of this problem. In the end we touch briefly on Thompson sampling as a solution.

  • Shakespeare, Abiogenesis, and Exoplanets

    25/09/2015 Duration: 58min

    Our episode this week begins with a correction. Back in episode 28 (Monkeys on Typewriters), Kyle made some bold claims about the probability that monkeys banging on typewriters might produce the entire works of Shakespeare by chance. The proof shown in the show notes turned out to be a bit dubious and Dave Spiegel joins us in this episode to set the record straight. In addition to that, out discussion explores a number of interesting topics in astronomy and astrophysics. This includes a paper Dave wrote with Ed Turner titled "Bayesian analysis of the astrobiological implications of life's early emergence on Earth" as well as exoplanet discovery.

  • [MINI] Sample Sizes

    18/09/2015 Duration: 13min

    There are several factors that are important to selecting an appropriate sample size and dealing with small samples. The most important questions are around representativeness - how well does your sample represent the total population and capture all it's variance? Linhda and Kyle talk through a few examples including elections, picking an Airbnb, produce selection, and home shopping as examples of cases in which the amount of observations one has are more or less important depending on how complex the underlying system one is observing is.

  • The Model Complexity Myth

    11/09/2015 Duration: 30min

    There's an old adage which says you cannot fit a model which has more parameters than you have data. While this is often the case, it's not a universal truth. Today's guest Jake VanderPlas explains this topic in detail and provides some excellent examples of when it holds and doesn't. Some excellent visuals articulating the points can be found on Jake's blog Pythonic Perambulations, specifically on his post The Model Complexity Myth. We also touch on Jake's work as an astronomer, his noteworthy open source contributions, and forthcoming book (currently available in an Early Edition) Python Data Science Handbook.

  • [MINI] Distance Measures

    04/09/2015 Duration: 12min

    There are many occasions in which one might want to know the distance or similarity between two things, for which the means of calculating that distance is not necessarily clear. The distance between two points in Euclidean space is generally straightforward, but what about the distance between the top of Mount Everest to the bottom of the ocean? What about the distance between two sentences? This mini-episode summarizes some of the considerations and a few of the means of calculating distance. We touch on Jaccard Similarity, Manhattan Distance, and a few others.

  • ContentMine

    28/08/2015 Duration: 53min

    ContentMine is a project which provides the tools and workflow to convert scientific literature into machine readable and machine interpretable data in order to facilitate better and more effective access to the accumulated knowledge of human kind. The program's founder Peter Murray-Rust joins us this week to discuss ContentMine. Our discussion covers the project, the scientific publication process, copywrite, and several other interesting topics.

  • [MINI] Structured and Unstructured Data

    21/08/2015 Duration: 13min

    Today's mini-episode explains the distinction between structured and unstructured data, and debates which of these categories best describe recipes.

  • Measuring the Influence of Fashion Designers

    14/08/2015 Duration: 24min

    Yusan Lin shares her research on using data science to explore the fashion industry in this episode. She has applied techniques from data mining, natural language processing, and social network analysis to explore who are the innovators in the fashion world and how their influence effects other designers. If you found this episode interesting and would like to read more, Yusan's papers Text-Generated Fashion Influence Model: An Empirical Study on Style.com and The Hidden Influence Network in the Fashion Industry are worth reading.

  • [MINI] PageRank

    07/08/2015 Duration: 08min

    PageRank is the algorithm most famous for being one of the original innovations that made Google stand out as a search engine. It was defined in the classic paper The Anatomy of a Large-Scale Hypertextual Web Search Engine by Sergey Brin and Larry Page. While this algorithm clearly impacted web searching, it has also been useful in a variety of other applications. This episode presents a high level description of this algorithm and how it might apply when trying to establish who writes the most influencial academic papers.

  • Data Science at Work in LA County

    29/07/2015 Duration: 41min

    In this episode, Benjamin Uminsky enlightens us about some of the ways the Los Angeles County Registrar-Recorder/County Clerk leverages data science and analysis to help be more effective and efficient with the services and expectations they provide citizens. Our topics range from forecasting to predicting the likelihood that people will volunteer to be poll workers. Benjamin recently spoke at Big Data Day LA. Videos have not yet been posted, but you can see the slides from his talk Data Mining Forecasting and BI at the RRCC if this episode has left you hungry to learn more. During the show, Benjamin encouraged any Los Angeles residents who have some time to serve their community consider becoming a pollworker.

  • [MINI] k-Nearest Neighbors

    24/07/2015 Duration: 08min

    This episode explores the k-nearest neighbors algorithm which is an unsupervised, non-parametric method that can be used for both classification and regression. The basica concept is that it leverages some distance function on your dataset to find the $k$ closests other observations of the dataset and averaging them to impute an unknown value or unlabelled datapoint.

  • Crypto

    17/07/2015 Duration: 01h24min

    How do people think rationally about small probability events? What is the optimal statistical process by which one can update their beliefs in light of new evidence? This episode of Data Skeptic explores questions like this as Kyle consults a cast of previous guests and experts to try and answer the question "What is the probability, however small, that Bigfoot is real?"

  • [MINI] MapReduce

    10/07/2015 Duration: 12min

    This mini-episode is a high level explanation of the basic idea behind MapReduce, which is a fundamental concept in big data. The origin of the idea comes from a Google paper titled MapReduce: Simplified Data Processing on Large Clusters. This episode makes an analogy to tabulating paper voting ballets as a means of helping to explain how and why MapReduce is an important concept.

  • Genetically Engineered Food and Trends in Herbicide Usage

    03/07/2015 Duration: 34min

    The Credible Hulk joins me in this episode to discuss a recent blog post he wrote about glyphosate and the data about how it's introduction changed the historical usage trends of other herbicides. Links to all the sources and references can be found in the blog post. In this discussion, we also mention the food babe and Last Thursdayism which may be worth some further reading. Kyle also mentioned the list of ingredients or chemical composition of a banana. Credible Hulk mentioned the Mommy PhD facebook page. An interesting article about Mommy PhD can be found here. Lastly, if you enjoyed the show, please "Like" the Credible Hulk facebook group.

  • [MINI] The Curse of Dimensionality

    26/06/2015 Duration: 10min

    More features are not always better! With an increasing number of features to consider, machine learning algorithms suffer from the curse of dimensionality, as they have a wider set and often sparser coverage of examples to consider. This episode explores a real life example of this as Kyle and Linhda discuss their thoughts on purchasing a home. The curse of dimensionality was defined by Richard Bellman, and applies in several slightly nuanced cases. This mini-episode discusses how it applies on machine learning. This episode does not, however, discuss a slightly different version of the curse of dimensionality which appears in decision theoretic situations. Consider the game of chess. One must think ahead several moves in order to execute a successful strategy. However, thinking ahead another move requires a consideration of every possible move of every piece controlled, and every possible response one's opponent may take. The space of possible future states of the board grows exponentially with the horizon

  • Video Game Analytics

    19/06/2015 Duration: 31min

    This episode discusses video game analytics with guest Anders Drachen. The way in which people get access to games and the opportunity for game designers to ask interesting questions with data has changed quite a bit in the last two decades. Anders shares his insights about the past, present, and future of game analytics. We explore not only some of the innovations and interesting ways of examining user experience in the gaming industry, but also touch on some of the exciting opportunities for innovation that are right on the horizon. You can find more from Anders online at andersdrachen.com, and follow him on twitter @andersdrachen

  • [MINI] Anscombe's Quartet

    12/06/2015 Duration: 09min

    This mini-episode discusses Anscombe's Quartet, a series of four datasets which are clearly very different but share some similar statistical properties with one another. For example, each of the four plots has the same mean and variance on both axis, as well as the same correlation coefficient, and same linear regression.   The episode tries to add some context by imagining each of these datasets as data about a sports team, and why it can be important to look beyond basic summary statistics when exploring your dataset.

page 26 from 29