Synopsis
Data Skeptic is a data science podcast exploring machine learning, statistics, artificial intelligence, and other data topics through short tutorials and interviews with domain experts.
Episodes
-
[MINI] Bargaining
06/05/2016 Duration: 15minBargaining is the process of two (or more) parties attempting to agree on the price for a transaction. Game theoretic approaches attempt to find two strategies from which neither party is motivated to deviate. These strategies are said to be in equilibrium with one another. The equilibriums available in bargaining depend on the the transaction mechanism and the information of the parties. Discounting (how long parties are willing to wait) has a significant effect in this process. This episode discusses some of the choices Kyle and Linh Da made in deciding what offer to make on a house.
-
deepjazz
29/04/2016 Duration: 29minDeepjazz is a project from Ji-Sung Kim, a computer science student at Princeton University. It is built using Theano, Keras, music21, and Evan Chow's project jazzml. Deepjazz is a computational music project that creates original jazz compositions using recurrent neural networks trained on Pat Metheny's "And Then I Knew". You can hear some of deepjazz's original compositions on soundcloud.
-
[MINI] Auto-correlative functions and correlograms
22/04/2016 Duration: 14minWhen working with time series data, there are a number of important diagnostics one should consider to help understand more about the data. The auto-correlative function, plotted as a correlogram, helps explain how a given observations relates to recent preceding observations. A very random process (like lottery numbers) would show very low values, while temperature (our topic in this episode) does correlate highly with recent days. See the show notes with details about Chapel Hill, NC weather data by visiting: https://dataskeptic.com/blog/episodes/2016/acf-correlograms
-
Early Identification of Violent Criminal Gang Members
15/04/2016 Duration: 27minThis week I spoke with Elham Shaabani and Paulo Shakarian (@PauloShakASU) about their recent paper Early Identification of Violent Criminal Gang Members (also available onarXiv). In this paper, they use social network analysis techniques and machine learning to provide early detection of known criminal offenders who are in a high risk group for committing violent crimes in the future. Their techniques outperform existing techniques used by the police. Elham and Paulo are part of the Cyber-Socio Intelligent Systems (CySIS) Lab.
-
[MINI] Fractional Factorial Design
08/04/2016 Duration: 11minA dinner party at Data Skeptic HQ helps teach the uses of fractional factorial design for studying 2-way interactions.
-
Machine Learning Done Wrong
01/04/2016 Duration: 25minCheng-tao Chu (@chengtao_chu) joins us this week to discuss his perspective on common mistakes and pitfalls that are made when doing machine learning. This episode is filled with sage advice for beginners and intermediate users of machine learning, and possibly some good reminders for experts as well. Our discussion parallels his recent blog postMachine Learning Done Wrong. Cheng-tao Chu is an entrepreneur who has worked at many well known silicon valley companies. His paper Map-Reduce for Machine Learning on Multicore is the basis for Apache Mahout. His most recent endeavor has just emerged from steath, so please check out OneInterview.io.
-
Potholes
25/03/2016 Duration: 41minCo-host Linh Da was in a biking accident after hitting a pothole. She sustained an injury that required stitches. This is the story of our quest to file a 311 complaint and track it through the City of Los Angeles's open data portal. My guests this episode are Chelsea Ursaner (LA City Open Data Team), Ben Berkowitz (CEO and founder of SeeClickFix), and Russ Klettke (Editor of pothole.info)
-
[MINI] The Elbow Method
18/03/2016 Duration: 15minCertain data mining algorithms (including k-means clustering and k-nearest neighbors) require a user defined parameter k. A user of these algorithms is required to select this value, which raises the questions: what is the "best" value of k that one should select to solve their problem? This mini-episode explores the appropriate value of k to use when trying to estimate the cost of a house in Los Angeles based on the closests sales in it's area.
-
Too Good to be True
11/03/2016 Duration: 35minToday on Data Skeptic, Lachlan Gunn joins us to discuss his recent paper Too Good to be True. This paper highlights a somewhat paradoxical / counterintuitive fact about how unanimity is unexpected in cases where perfect measurements cannot be taken. With large enough data, some amount of error is expected. The "Too Good to be True" paper highlights three interesting examples which we discuss in the podcast. You can also watch a lecture from Lachlan on this topic via youtube here.
-
[MINI] R-squared
04/03/2016 Duration: 13minHow well does your model explain your data? R-squared is a useful statistic for answering this question. In this episode we explore how it applies to the problem of valuing a house. Aspects like the number of bedrooms go a long way in explaining why different houses have different prices. There's some amount of variance that can be explained by a model, and some amount that cannot be directly measured. R-squared is the ratio of the explained variance to the total variance. It's not a measure of accuracy, it's a measure of the power of one's model.
-
Models of Mental Simulation
26/02/2016 Duration: 39minJessica Hamrick joins us this week to discuss her work studying mental simulation. Her research combines machine learning approaches iwth behavioral method from cognitive science to help explain how people reason and predict outcomes. Her recent paper Think again? The amount of mental simulation tracks uncertainty in the outcome is the focus of our conversation in this episode. Lastly, Kyle invited Samuel Hansen from the Relative Prime podcast to mention the Relatively Prime Season 3 kickstarter, which needs your support now through Friday, March 11th, 2016.
-
[MINI] Multiple Regression
19/02/2016 Duration: 18minThis episode is a discussion of multiple regression: the use of observations that are a vector of values to predict a response variable. For this episode, we consider how features of a home such as the number of bedrooms, number of bathrooms, and square footage can predict the sale price. Unlike a typical episode of Data Skeptic, these show notes are not just supporting material, but are actually featured in the episode. The site Redfin gratiously allows users to download a CSV of results they are viewing. Unfortunately, they limit this extract to 500 listings, but you can still use it to try the same approach on your own using the download link shown in the figure below.
-
Scientific Studies of People's Relationship to Music
12/02/2016 Duration: 42minSamuel Mehr joins us this week to share his perspective on why people are musical, where music comes from, and why it works the way it does. We discuss a number of empirical studies related to music and musical cognition, and dispense a few myths about music along the way. Some of Sam's work discussed in this episode include Music in the Home: New Evidence for an Intergenerational Link,Two randomized trials provide no consistent evidence for nonmusical cognitive benefits of brief preschool music enrichment, and Miscommunication of science: music cognition research in the popular press. Additional topics we discussed are also covered in a Harvard Gazette article featuring Sam titled Muting the Mozart effect. You can follow Sam on twitter via @samuelmehr.
-
[MINI] k-d trees
05/02/2016 Duration: 14minThis episode reviews the concept of k-d trees: an efficient data structure for holding multidimensional objects. Kyle gives Linhda a dictionary and asks her to look up words as a way of introducing the concept of binary search. We actually spend most of the episode talking about binary search before getting into k-d trees, but this is a necessary prerequisite.
-
Auditing Algorithms
29/01/2016 Duration: 42minAlgorithms are pervasive in our society and make thousands of automated decisions on our behalf every day. The possibility of digital discrimination is a very real threat, and it is very plausible for discrimination to occur accidentally (i.e. outside the intent of the system designers and programmers). Christian Sandvig joins us in this episode to talk about his work and the concept of auditing algorithms. Christian Sandvig (@niftyc) has a PhD in communications from Stanford and is currently an Associate Professor of Communication Studies and Information at the University of Michigan. His research studies the predictable and unpredictable effects that algorithms have on culture. His work exploring the topic of auditing algorithms has framed the conversation of how and why we might want to have oversight on the way algorithms effect our lives. His writing appears in numerous publications including The Social Media Collective, The Huffington Post, and Wired. One of his papers we discussed in depth on this epis
-
[MINI] The Bonferroni Correction
22/01/2016 Duration: 14minToday's episode begins by asking how many left handed employees we should expect to be at a company before anyone should claim left handedness discrimination. If not lefties, let's consider eye color, hair color, favorite ska band, most recent grocery store used, and any number of characteristics could be studied to look for deviations from the norm in a company. When multiple comparisons are to be made simultaneous, one must account for this, and a common method for doing so is with the Bonferroni Correction. It is not, however, a sure fire procedure, and this episode wraps up with a bit of skepticism about it.
-
Detecting Pseudo-profound BS
15/01/2016 Duration: 37minA recent paper in the journal of Judgment and Decision Making titled On the reception and detection of pseudo-profound bullshit explores empirical questions around a reader's ability to detect statements which may sound profound but are actually a collection of buzzwords that fail to contain adequate meaning or truth. These statements are definitively different from lies and nonesense, as we discuss in the episode. This paper proposes the Bullshit Receptivity scale (BSR) and empirically demonstrates that it correlates with existing metrics like the Cognitive Reflection Test, building confidence that this can be a useful, repeatable, empirical measure of a person's ability to detect pseudo-profound statements as being different from genuinely profound statements. Additionally, the correlative results provide some insight into possible root causes for why individuals might find great profundity in these statements based on other beliefs or cognitive measures. The paper's lead author Gordon Pennycook joins me t
-
[MINI] Gradient Descent
08/01/2016 Duration: 14minToday's mini episode discusses the widely known optimization algorithm gradient descent in the context of hiking in a foggy hillside.
-
Let's Kill the Word Cloud
01/01/2016 Duration: 15minThis episode is a discussion of data visualization and a proposed New Year's resolution for Data Skeptic listeners. Let's kill the word cloud.
-
2015 Holiday Special
25/12/2015 Duration: 14minToday's episode is a reading of Isaac Asimov's The Machine that Won the War. I can't think of a story that's more appropriate for Data Skeptic.