Data Skeptic

  • Author: Vários
  • Narrator: Vários
  • Publisher: Podcast
  • Duration: 298:52:45
  • More information

Informações:

Synopsis

Data Skeptic is a data science podcast exploring machine learning, statistics, artificial intelligence, and other data topics through short tutorials and interviews with domain experts.

Episodes

  • Human vs Machine Transcription

    08/03/2019 Duration: 32min

    Machine transcription (the process of translating audio recordings of language to text) has come a long way in recent years. But how do the errors made during machine transcription compare to the errors made by a human transcriber? Find out in this episode!

  • seq2seq

    01/03/2019 Duration: 21min

    A sequence to sequence (or seq2seq) model is neural architecture used for translation (and other tasks) which consists of an encoder and a decoder. The encoder/decoder architecture has obvious promise for machine translation, and has been successfully applied this way. Encoding an input to a small number of hidden nodes which can effectively be decoded to a matching string requires machine learning to learn an efficient representation of the essence of the strings. In addition to translation, seq2seq models have been used in a number of other NLP tasks such as summarization and image captioning. Related Links tf-seq2seq Describing Multimedia Content using Attention-based Encoder--Decoder Networks Show and Tell: A Neural Image Caption Generator Attend to You: Personalized Image Captioning with Context Sequence Memory Networks

  • Text Mining in R

    22/02/2019 Duration: 20min

    Kyle interviews Julia Silge about her path into data science, her book Text Mining with R, and some of the ways in which she's used natural language processing in projects both personal and professional. Related Links https://stack-survey-2018.glitch.me/ https://stackoverflow.blog/2017/03/28/realistic-developer-fiction/

  • Recurrent Relational Networks

    15/02/2019 Duration: 19min

    One of the most challenging NLP tasks is natural language understanding and reasoning. How can we construct algorithms that are able to achieve human level understanding of text and be able to answer general questions about it? This is truly an open problem, and one with the bAbI dataset has been constructed to facilitate. bAbI presents a variety of different language understanding and reasoning tasks and exists as benchmark for comparing approaches. In this episode, Kyle talks to Rasmus Berg Palm about his recent paper Recurrent Relational Networks

  • Text World and Word Embedding Lower Bounds

    08/02/2019 Duration: 39min

    In the first half of this episode, Kyle speaks with Marc-Alexandre Côté and Wendy Tay about Text World.  Text World is an engine that simulates text adventure games.  Developers are encouraged to try out their reinforcement learning skills building agents that can programmatically interact with the generated text adventure games.   In the second half of this episode, Kyle interviews Kevin Patel about his paper Towards Lower Bounds on Number of Dimensions for Word Embeddings.  In this research, the explore an important question of how many hidden nodes to use when creating a word embedding.

  • word2vec

    01/02/2019 Duration: 31min

    Word2vec is an unsupervised machine learning model which is able to capture semantic information from the text it is trained on. The model is based on neural networks. Several large organizations like Google and Facebook have trained word embeddings (the result of word2vec) on large corpora and shared them for others to use. The key algorithmic ideas involved in word2vec is the continuous bag of words model (CBOW). In this episode, Kyle uses excerpts from the 1983 cinematic masterpiece War Games, and challenges Linhda to guess a word Kyle leaves out of the transcript. This is similar to how word2vec is trained. It trains a neural network to predict a hidden word based on the words that appear before and after the missing location.

  • Authorship Attribution

    25/01/2019 Duration: 50min

    In a recent paper, Leveraging Discourse Information Effectively for Authorship Attribution, authors Su Wang, Elisa Ferracane, and Raymond J. Mooney describe a deep learning methodology for predict which of a collection of authors was the author of a given document.

  • Very Large Corpora and Zipf's Law

    18/01/2019 Duration: 24min

    The earliest efforts to apply machine learning to natural language tended to convert every token (every word, more or less) into a unique feature. While techniques like stemming may have cut the number of unique tokens down, researchers always had to face a problem that was highly dimensional. Naive Bayes algorithm was celebrated in NLP applications because of its ability to efficiently process highly dimensional data. Of course, other algorithms were applied to natural language tasks as well. While different algorithms had different strengths and weaknesses to different NLP problems, an early paper titled Scaling to Very Very Large Corpora for Natural Language Disambiguation popularized one somewhat surprising idea. For many NLP tasks, simply providing a large corpus of examples not only improved accuracy, but it also showed that asymptotically, some algorithms yielded more improvement from working on very, very large corpora. Although not explicitly in about NLP, the noteworthy paper The Unreasonable Effect

  • Semantic search at Github

    11/01/2019 Duration: 34min

    Github is many things besides source control. It's a social network, even though not everyone realizes it. It's a vast repository of code. It's a ticketing and project management system. And of course, it has search as well. In this episode, Kyle interviews Hamel Husain about his research into semantic code search.

  • Let's Talk About Natural Language Processing

    04/01/2019 Duration: 36min

    This episode reboots our podcast with the theme of Natural Language Processing for the next few months. We begin with introductions of Yoshi and Linh Da and then get into a broad discussion about natural language processing: what it is, what some of the classic problems are, and just a bit on approaches. Finishing out the show is an interview with Lucy Park about her work on the KoNLPy library for Korean NLP in Python. If you want to share your NLP project, please join our Slack channel.  We're eager to see what listeners are working on! http://konlpy.org/en/latest/    

  • Data Science Hiring Processes

    28/12/2018 Duration: 33min

    Kyle shares a few thoughts on mistakes observed by job applicants and also shares a few procedural insights listeners at early stages in their careers might find value in.

  • Holiday Reading - Epicac

    25/12/2018 Duration: 21min

    Epicac by Kurt Vonnegut.

  • Drug Discovery with Machine Learning

    21/12/2018 Duration: 28min

    In today's episode, Kyle chats with Alexander Zhebrak, CTO of Insilico Medicine, Inc. Insilico self describes as artificial intelligence for drug discovery, biomarker development, and aging research. The conversation in this episode explores the ways in which machine learning, in particular, deep learning, is contributing to the advancement of drug discovery. This happens not just through research but also through software development. Insilico works on data pipelines and tools like MOSES, a benchmarking platform to support research on machine learning for drug discovery. The MOSES platform provides a standardized benchmarking dataset, a set of open-sourced models with unified implementation, and metrics to evaluate and assess their performance.

  • Sign Language Recognition

    14/12/2018 Duration: 19min

    At the NeurIPS 2018 conference, Stradigi AI premiered a training game which helps players learn American Sign Language. This episode brings the first of many interviews conducted at NeurIPS 2018. In this episode, Kyle interviews Chief Data Scientist Carolina Bessega about the deep learning architecture used in this project. The Stradigi AI team was exhibiting a project called the American Sign Language (ASL) Alphabet Game at the recent NeurIPS 2018 conference. They also published a detailed blog post about how they built the system found here.

  • Data Ethics

    07/12/2018 Duration: 19min

     This week, Kyle interviews Scott Nestler on the topic of Data Ethics. Today, no ubiquitous, formal ethical protocol exists for data science, although some have been proposed. One example is the INFORMS Ethics Guidelines. Guidelines like this are rather informal compared to other professions, like the Hippocratic Oath. Yet not every profession requires such a formal commitment. In this episode, Scott shares his perspective on a variety of ethical questions specific to data and analytics.

  • Escaping the Rabbit Hole

    30/11/2018 Duration: 33min

    Kyle interviews Mick West, author of Escaping the Rabbit Hole: How to Debunk Conspiracy Theories Using Facts, Logic, and Respect about the nature of conspiracy theories, the people that believe them, and how to help people escape the belief in false information. Mick is also the creator of metabunk.org. The discussion explores conspiracies like chemtrails, 9/11 conspiracy theories, JFK assassination theories, and the flat Earth theory. We live in a complex world in which no person can have a sufficient understanding of all topics. It's only natural that some percentage of people will eventually adopt fringe beliefs. In this book, Mick provides a fantastic guide to helping individuals who have fallen into a rabbit hole of pseudo-science or fake news.

  • Theorem Provers

    23/11/2018 Duration: 18min

    Fake news attempts to lead readers/listeners/viewers to conclusions that are not descriptions of reality.  They do this most often by presenting false premises, but sometimes by presenting flawed logic. An argument is only sound and valid if the conclusions are drawn directly from all the state premises, and if there exists a path of logical reasoning leading from those premises to the conclusion. While creating a theorem does feel to most mathematicians as a creative act of discovery, some theorems have been proven using nothing more than search.  All the "rules" of logic (like modus ponens) can be encoded into a computer program.  That program can start from the premises, applying various combinations of rules to inference new information, and check to see if the program has inference the desired conclusion or its negation.  This does seem like a mechanical process when painted in this light.  However, several challenges exist preventing any theorem prover from instantly solving all the open problems in mat

  • Automated Fact Checking

    16/11/2018 Duration: 31min

    Fake news can be responded to with fact-checking. However, it's easier to create fake news than the fact check it. Full Fact is the UK's independent fact-checking organization. In this episode, Kyle interviews Mevan Babakar, head of automated fact-checking at Full Fact. Our discussion talks about the process and challenges in doing fact-checking. Full Fact has been exploring ways in which machine learning can assist in automating parts of the fact-checking process. Progress in areas like this allows journalists to be more effective and rapid in responding to new information.

  • Single Source of Truth

    09/11/2018 Duration: 29min

    In mathematics, truth is universal.  In data, truth lies in the where clause of the query. As large organizations have grown to rely on their data more significantly for decision making, a common problem is not being able to agree on what the data is. As the volume and velocity of data grow, challenges emerge in answering questions with precision.  A simple question like "what was the revenue yesterday" could become mired in details.  Did your query account for transactions that haven't been finalized?  If I query again later, should I exclude orders that have been returned since the last query?  What time zone should I use?  The list goes on and on. In any large enough organization, you are also likely to find multiple copies if the same data.  Independent systems might record the same information with slight variance.  Sometimes systems will import data from other systems; a process which could become out of sync for several reasons. For any sufficiently large system, answering analytical questions with pre

  • Detecting Fast Radio Bursts with Deep Learning

    02/11/2018 Duration: 44min

    Fast radio bursts are an astrophysical phenomenon first observed in 2007. While many observations have been made, science has yet to explain the mechanism for these events. This has led some to ask: could it be a form of extra-terrestrial communication? Probably not. Kyle asks Gerry Zhang who works at the Berkeley SETI Research Center about this possibility and more importantly, about his applications of deep learning to detect fast radio bursts. Radio astronomy captures observations from space which can be converted to a waterfall chart or spectrogram. These data structures can be formatted in a visual way and also make great candidates for applying deep learning to the task of detecting the fast radio bursts.

page 17 from 29