Synopsis
Data Skeptic is a data science podcast exploring machine learning, statistics, artificial intelligence, and other data topics through short tutorials and interviews with domain experts.
Episodes
-
N-Beats
12/07/2021 Duration: 34minToday on the show we have Boris Oreshkin @boreshkin, a Senior Research Scientist at Unity Technologies, who joins us today to talk about his work N-BEATS: Neural Basis Expansion Analysis for Interpretable Time Series Forecasting. Works Mentioned: N-BEATS: Neural Basis Expansion Analysis for Interpretable Time Series Forecasting By Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, Yoshua Bengio https://arxiv.org/abs/1905.10437 Social Media Linkedin Twitter
-
Translation Automation
06/07/2021 Duration: 36minToday we are back with another episode discussing AI in the work field. AI has, is, and will continue to facilitate the automation of work done by humans. Sometimes this may be an entire role. Other times it may automate a particular part of their role, scaling their effectiveness. Carl Stimson, a Freelance Japanese to English translator, comes on the show to talk about his work in translation and his perspective about how AI will change translation in the future.
-
Time Series at the Beach
28/06/2021 Duration: 23minShane Ross, Professor of Aerospace and Ocean Engineering at Virginia Tech University, comes on today to talk about his work “Beach-level 24-hour forecasts of Florida red tide-induced respiratory irritation.”
-
Automatic Identification of Outlier Galaxy Images
21/06/2021 Duration: 36minLior Shamir, Associate Professor of Computer Science at Kansas University, joins us today to talk about the recent paper Automatic Identification of Outliers in Hubble Space Telescope Galaxy Images. Follow Lio on Twitter @shamir_lior
-
Do We Need Deep Learning in Time Series
16/06/2021 Duration: 29minShereen Elsayed and Daniela Thyssens, both are PhD Student at Hildesheim University in Germany, come on today to talk about the work “Do We Really Need Deep Learning Models for Time Series Forecasting?”
-
Detecting Drift
11/06/2021 Duration: 27minSam Ackerman, Research Data Scientist at IBM Research Labs in Haifa, Israel, joins us today to talk about his work Detection of Data Drift and Outliers Affecting Machine Learning Model Performance Over Time. Check out Sam's IBM statistics/ML blog at: http://www.research.ibm.com/haifa/dept/vst/ML-QA.shtml
-
Darts Library for Time Series
31/05/2021 Duration: 25minJulien Herzen, PhD graduate from EPFL in Switzerland, comes on today to talk about his work with Unit 8 and the development of the Python Library: Darts.
-
Forecasting Principles and Practice
24/05/2021 Duration: 31minWelcome to Timeseries! Today’s episode is an interview with Rob Hyndman, Professor of Statistics at Monash University in Australia, and author of Forecasting: Principles and Practices.
-
Prequisites for Time Series
21/05/2021 Duration: 08minToday's experimental episode uses sound to describe some basic ideas from time series. This episode includes lag, seasonality, trend, noise, heteroskedasticity, decomposition, smoothing, feature engineering, and deep learning.
-
Orders of Magnitude
07/05/2021 Duration: 33minToday’s show in two parts. First, Linhda joins us to review the episodes from Data Skeptic: Pilot Season and give her feedback on each of the topics. Second, we introduce our new segment “Orders of Magnitude”. It’s a statistical game show in which participants must identify the true statistic hidden in a list of statistics which are off by at least an order of magnitude. Claudia and Vanessa join as our first contestants. Below are the sources of our questions. Heights https://en.wikipedia.org/wiki/Willis_Tower https://en.wikipedia.org/wiki/Eiffel_Tower https://en.wikipedia.org/wiki/GreatPyramidof_Giza https://en.wikipedia.org/wiki/InternationalSpaceStation Bird Statistics Birds in the US since 2000 Causes of Bird Mortality Amounts of Data Our statistics come from this post
-
They're Coming for Our Jobs
03/05/2021 Duration: 43minAI has, is, and will continue to facilitate the automation of work done by humans. Sometimes this may be an entire role. Other times it may automate a particular part of their role, scaling their effectiveness. Unless progress in AI inexplicably halts, the tasks done by humans vs. machines will continue to evolve. Today’s episode is a speculative conversation about what the future may hold. Co-Host of Squaring the Strange Podcast, Caricature Artist, and an Academic Editor, Celestia Ward joins us today! Kyle and Celestia discuss whether or not her jobs as a caricature artist or as an academic editor are under threat from AI automation. Mentions https://squaringthestrange.wordpress.com/ https://twitter.com/celestiaward The legendary Dr. Jorge Pérez and his work studying unicorns Supernormal stimulus International Society of Caricature Artists Two Heads Studios
-
Pandemic Machine Learning Pitfalls
26/04/2021 Duration: 40minToday on the show Derek Driggs, a PhD Student at the University of Cambridge. He comes on to discuss the work Common Pitfalls and Recommendations for Using Machine Learning to Detect and Prognosticate for COVID-19 Using Chest Radiographs and CT Scans. Help us vote for the next theme of Data Skeptic! Vote here: https://dataskeptic.com/vote
-
Flesch Kincaid Readability Tests
19/04/2021 Duration: 20minGiven a document in English, how can you estimate the ease with which someone will find they can read it? Does it require a college-level of reading comprehension or is it something a much younger student could read and understand? While these questions are useful to ask, they don't admit a simple answer. One option is to use one of the (essentially identical) two Flesch Kincaid Readability Tests. These are simple calculations which provide you with a rough estimate of the reading ease. In this episode, Kyle shares his thoughts on this tool and when it could be appropriate to use as part of your feature engineering pipeline towards a machine learning objective. For empirical validation of these metrics, the plot below compares English language Wikipedia pages with "Simple English" Wikipedia pages. The analysis Kyle describes in this episode yields the intuitively pleasing histogram below. It summarizes the distribution of Flesch reading ease scores for 1000 pages examined from both Wikipedias.
-
Fairness Aware Outlier Detection
09/04/2021 Duration: 39minToday on the show we have Shubhranshu Shekar, a Ph. D Student at Carnegie Mellon University, who joins us to talk about his work, FAIROD: Fairness-aware Outlier Detection.
-
Life May be Rare
05/04/2021 Duration: 43minToday on the show Dr. Anders Sandburg, Senior Research Fellow at the Future of Humanity Institute at Oxford University, comes on to share his work “The Timing of Evolutionary Transitions Suggest Intelligent Life is Rare.” Works Mentioned: Paper: “The Timing of Evolutionary Transitions Suggest Intelligent Life is Rare.”by Andrew E Snyder-Beattie, Anders Sandberg, K Eric Drexler, Michael B Bonsall Twitter: @anderssandburg
-
Social Networks
29/03/2021 Duration: 49minMayank Kejriwal, Research Professor at the University of Southern California and Researcher at the Information Sciences Institute, joins us today to discuss his work and his new book Knowledge, Graphs, Fundamentals, Techniques and Applications by Mayank Kejriwal, Craig A. Knoblock, and Pedro Szekley. Works Mentioned “Knowledge, Graphs, Fundamentals, Techniques and Applications”by Mayank Kejriwal, Craig A. Knoblock, and Pedro Szekley
-
The QAnon Conspiracy
22/03/2021 Duration: 43minQAnon is a conspiracy theory born in the underbelly of the internet. While easy to disprove, these cryptic ideas captured the minds of many people and (in part) paved the way to the 2021 storming of the US Capital. This is a contemporary conspiracy which came into existence and grew in a very digital way. This makes it possible for researchers to study this phenomenon in a way not accessible in previous conspiracy theories of similar popularity. This episode is not so much a debunking of this debunked theory, but rather an exploration of the metadata and origins of this conspiracy. This episode is also the first in our 2021 Pilot Season in which we are going to test out a few formats for Data Skeptic to see what our next season should be. This is the first installment. In a few weeks, we're going to ask everyone to vote for their favorite theme for our next season.
-
Benchmarking Vision on Edge vs Cloud
15/03/2021 Duration: 47minKarthick Shankar, Masters Student at Carnegie Mellon University, and Somali Chaterji, Assistant Professor at Purdue University, join us today to discuss the paper "JANUS: Benchmarking Commercial and Open-Source Cloud and Edge Platforms for Object and Anomaly Detection Workloads" Works Mentioned: https://ieeexplore.ieee.org/abstract/document/9284314 “JANUS: Benchmarking Commercial and Open-Source Cloud and Edge Platforms for Object and Anomaly Detection Workloads.” by: Karthick Shankar, Pengcheng Wang, Ran Xu, Ashraf Mahgoub, Somali ChaterjiSocial Media Karthick Shankar https://twitter.com/karthick_sh Somali Chaterji https://twitter.com/somalichaterji?lang=en https://schaterji.io/
-
Goodhart's Law in Reinforcement Learning
05/03/2021 Duration: 37minHal Ashton, a PhD student from the University College of London, joins us today to discuss a recent work Causal Campbell-Goodhart’s law and Reinforcement Learning. "Only buy honey from a local producer." - Hal Ashton Works Mentioned: “Causal Campbell-Goodhart’s law and Reinforcement Learning”by Hal AshtonBook “The Book of Why”by Judea PearlPaper Thanks to our sponsor! When your business is ready to make that next hire, find the right person with LinkedIn Jobs. Just visit LinkedIn.com/DATASKEPTIC to post a job for free! Terms and conditions apply
-
Video Anomaly Detection
01/03/2021 Duration: 24minYuqi Ouyang, in his second year of PhD study at the University of Warwick in England, joins us today to discuss his work “Video Anomaly Detection by Estimating Likelihood of Representations.”Works Mentioned: Video Anomaly Detection by Estimating Likelihood of Representations https://arxiv.org/abs/2012.01468 by: Yuqi Ouyang, Victor Sanchez